Quantum damped oscillator II: Bateman’s Hamiltonian vs. 2D Parabolic Potential Barrier
نویسنده
چکیده
We show that quantum Bateman’s system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.
منابع مشابه
Quantum damped oscillator I: dissipation and resonances
Quantization of a damped harmonic oscillator leads to so called Bateman’s dual system. The corresponding Bateman’s Hamiltonian, being a self-adjoint operator, displays the discrete family of complex eigenvalues. We show that they correspond to the poles of energy eigenvectors and the corresponding resolvent operator when continued to the complex energy plane. Therefore, the corresponding genera...
متن کاملNonstandard conserved Hamiltonian structures in dissipative/damped systems : Nonlinear generalizations of damped harmonic oscillator
Abstract. In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden type nonlinear oscillator equation with linear forcing, ẍ+αxẋ+βx+γx = 0,which preserves the form of the time independent integral, conservative Hamiltonian and the equation of motion. Generalizing this transformation we prove the existence of non...
متن کاملGeneralized description of few-electron quantum dots at zero and nonzero magnetic fields
We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow–Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where ...
متن کاملSupersymmetric Quantum Mechanics of Scattering
In the quantum mechanics of collision problems we must consider scattering states of the system. For these states, the wave functions do not remain in Hilbert space, but they are expressible in terms of generalized functions of a Gel’fand triplet. Supersymmetric quantum mechanics for dealing with the scattering states is here proposed. SUSY (supersymmetry) is a concept which connects between bo...
متن کاملOn the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator
Using the modified PrelleSinger approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable c...
متن کامل